Глобальная проблема истощение сырьевых ресурсов. Причины возникновения и последствия мировой сырьевой проблемы. Понятие и причины сырьевой проблемы

Глобальная сырьевая проблема - это проблема обеспечения человечества сырьем. Использование сырьевых ресурсов на нашей планете растет значительными темпами. Современное хозяйство использует около 200 видов минерального сырья. Минеральными ресурсами принято называть полезные ископаемые, извлеченные из недр. Полезные ископаемые -- это природные минеральные вещества в земной коре, которые при данном состоянии развития техники могут быть с достаточным экономическим эффектом извлечены и использованы в народном хозяйстве в естественном виде или после предварительной переработки.

Производной от сырьевой проблемы является энергетическая проблема, так как большинство используемых энергоносителей являются ископаемым сырьем. Нередко в силу особой значимости энергетического сырья используют сочетание «минеральное сырье и топливо», а мировая сырьевая проблема часто рассматривается как топливно-сырьевая проблема. Однако между сырьевой и энергетической проблемами существуют и определенные различия, объясняющиеся как различиями в сферах применения топлива и сырья, так и тем, что само количество видов минерального (не говоря уже о неминеральном) сырья измеряется не единицами, а многими десятками, в то время как к основным видам энергоносителей относятся: нефть, каменные и бурые угли, природный газ, уран, битуминозные сланцы. Среди используемых природных ресурсов необходимо различать истощаемые (например, железная руда, нефть) и возобновляемые (например, лес, животный мир).

Одной из главных причин возникновения глобальной сырьевой проблемы считается постоянный рост объемов минерального сырья, извлекаемого из недр Земли, особенно ускорившийся во второй половине XX века. За последние 35 лет использовано 80-85 % нефти и газа по отношению к общему объёму их добычи за весь исторический период. Объём использования других видов минерального сырья за эти годы возрос в 3-5 раз: было извлечено 50 % меди и цинка, 55 % железной руды, 60 % алмазов, 65 % никеля, калийных солей и фосфоритов и около 80 % бокситов от общего объема их добычи с начала века .

В результате началось истощение многих бассейнов и месторождений, ускорилось обеднение многих используемых руд, возросло количество извлекаемой из недр пустой породы. Этот процесс затронул разные виды горно-металлургического, горно-химического и других видов сырья.

Одновременно с ростом добычи во многих случаях стали ухудшаться и горно-геологические условия залегания и извлечения полезных ископаемых. А стремление как-то компенсировать такое ухудшение путем освоения богатых месторождений в новых сырьевых районах, в свою очередь, привело к заметному увеличению территориального разрыва между центрами добычи и потребления, означающему неизбежный рост затрат на перевозку. На фоне этого чрезвычайно возросла зависимость стран Западной Европы, Японии и даже США от импорта многих важных видов минерального сырья. Данные о доле импорта минерального сырья США представлены в табл. 1.1.

Таблица 1.1 - Зависимость США от импорта некоторых видов минерального сырья

В целом, в США из развивающихся стран ввозят 15 - 20% необходимого сырья.

Данные о доле импорта минерального сырья в странах западной Европы и Японии представлены в табл. 1.2.

Таблица 1.2 - Зависимость стран западной Европы и Японии от импорта некоторых видов минерального сырья

Экстенсивное ведение сырьевого хозяйства, увеличение потребления, а соответственно и увеличение количества отходов, привело к ухудшению экологической обстановки.

Тем не менее, вряд ли целесообразно утверждать о существовании дефицита природных ресурсов на планете. Конечно, рост масштабов потребления не может не усиливать давление на ресурсный потенциал планеты. Вопрос о том, насколько велики ресурсы Земли, становится одним из самых важных. То, что ископаемые ресурсы Земли небезграничны, известно давно. Отличительная черта их заключается в том, что они конечны и их предельная величина определяется общим содержанием того или иного элемента в земной коре и Мировом океане. То есть, теоретическая возможность физического истощения минеральных ресурсов при их длительной и интенсивной разработке существует. Но если исходить из предельной величины, то содержание большинства элементов в земной коре в тысячи и миллионы раз превышает современный уровень их потребления.

Ныне человечество вовлекло в хозяйственный оборот меньшую часть ресурсов Земли: глубина разрезов не превышает 700 м, шахт - 2,5 км, скважин? 10 тыс. м. Наконец, основные резервы сбережения ресурсов содержатся в зачастую отсталых технологиях, не позволяющих использовать значительную часть природных ресурсов. Так, используемые ныне технологии извлекают не более 2/5 потенциальных запасов нефти, а коэффициент полезного использования добытых энергетических ресурсов ограничен 30-35% .

С экономической точки зрения важны в первую очередь промышленные запасы полезных ископаемых (так называемые резервы), т.е. наиболее качественные и хорошо разведанные запасы, рентабельные для освоения при существующем уровне технических знаний. Обычно сюда относят достоверные, вероятные и в ряде случаев возможные запасы. И вот ресурсы этой категории относительно ограничены. Так, что касается топливных видов сырья, то, основываясь на нынешнем уровне технологических возможностей человечества, расчётная продолжительность использования мировых запасов угля составляет 160-620 лет, нефти - 25-90 лет, природного газа - 40-130 лет, урана (реакторы на лёгкой воде) - 30-80 лет. Другими словами, все виды топлива по всем категориям могут быть исчерпаны за 800 лет. Но если производство различных видов энергии будет расти сегодняшними темпами, то все виды используемого сейчас топлива будут исчерпаны через 130 лет, то есть в начале XXII века .

Кроме того, распределение природных запасов сырья и энергии по регионам и странам мира неравномерно. Это также способствует обострению топливно-сырьевой проблемы.

Как известно, значительная часть существующих и перспективных мировых запасов полезных ископаемых сосредоточена на территории так называемых развивающихся стран. Сейчас удельный вес развивающихся стран в запасах важнейших видов сырья среди государств с рыночной экономикой составляет от 30-40% (железная руда, уран, молибден) до 60-90% (кобальт, никель, нефть, олово, природный газ, фосфаты). Уже к середине 80-х гг. в этих странах было сосредоточено более 2/3 промышленных запасов, 8 из 17 важнейших видов сырья .

Так же известно, что их недра Земли всё ещё сравнительно мало изучены. Ещё к началу 80-х гг. доказанные запасы минерального сырья на единицу площади в бывших колониях и зависимых странах были примерно в 2 раза меньше, чем в центрах мирового хозяйства. Это проявление экономической отсталости развивающегося мира. Использование достижений науки и техники, в частности космической геологии, позволило бы более полно изучать территорию земного шара, лучше оценить существующие месторождения, ускорить открытие новых. В наибольшей мере это относится к недрам стран развивающегося мира. Примером может служить недавно открытое в Бразилии гигантское месторождение, где содержится 17 видов минерального сырья, в том числе 18 млрд. т. железной руды, 3,2 млрд. т. бокситов, 1 млрд. т. никеля .

Немаловажно и более высокое качество полезных ископаемых в развивающихся странах. Так, в США медная руда разрабатывается при содержании меди 0,7%, тогда как в Чили - 1,1%, в Замбии - 3%, в Заире - 3,9%. Более высокое качество руд в этих странах определяет их конкурентоспособность в условиях научно-технической отрасли и слабости финансовой базы.

Все эти факты свидетельствуют о том, что современный топливно-сырьевой потенциал развивающегося мира достаточно высок с точки зрения качества и количества.

Тем не менее, за высоким в целом уровнем «обеспеченности» развивающейся зоны разнообразными полезными ископаемыми скрываются различия между отдельными странами и регионами. Подавляющая часть разведанных запасов топлива и сырья сосредоточена приблизительно в 45 и 130 государств и территорий развивающегося мира. Однако лишь в 10 из этих 45 стран обнаружено более 3 видов полезных ископаемых, а в прочих - только 1-2 вида. Поэтому лишь некоторые, самые крупные страны могут использовать собственный более или менее диверсифицированный добывающий комплекс в качестве материальной базы создания многоотраслевой обрабатывающей промышленности. В их число входят Аргентина, Бразилия, Венесуэла, Индия, Мексика, Перу, а также отчасти Боливия, Заир, Иран .

Ископаемое сырье - важная категория международной торговли, на нее приходится 13% всего товарного экспорта. Многие развивающиеся страны, не имеющие промышленного потенциала, используют эксплуатацию природных ресурсов, как основной источник получения средств, для решения своих социально-экономических проблем, что делает экономику страны зависимой от экспорта сырья (таблица 1.3) . Для ряда из них поставки сырья дают основную часть экспортных доходов. У 15 стран нефть и газ составляют от 70% до 96% их экспорта, у пяти стран металлические минералы и алмазы от 61% до 90%.

Таблица 1.3 - Доля развивающихся стран в мировом экспорте ископаемого сырья*, %

Подобная зависимость индустриальных и развивающихся стран от внешних поставок и поступлений сырья обеспечивает мировой торговле минералами достаточно стабильную роль в удовлетворении хозяйственных потребностей.

Таким образом, учитывая все вышеизложенное, можно выделить основные причины, приведшие к появлению мировой топливно-сырьевой проблемы:

Истощение разрабатываемых месторождений угля, нефти, железных и других руд, а так же ограниченность разведанных запасов нефти, природного газа и минеральных ископаемых;

Открытие и добыча полезных ископаемых в худших по сравнению с прежними условиями;

Увеличение территориального разрыва между районами добычи и потребления полезных ископаемых;

Низкая эффективность технологий добычи, переработки и использования добытых минеральных и энергетических ресурсов и др.

Использование топливно-энергетических и сырьевых ресурсов на нашей планете растет значительными темпами. Сегодня промышленный работник в процессе труда вооружен энергией примерно в 100 лошадиных сил. На каждого жителя планеты производится около 2 кВт энергии, а для обеспечения общепризнанных норм качества жизни необходимо 10 кВт. Такой показатель достигнут только в некоторых наиболее развитых странах мира. В связи с этим, а также ввиду дальнейшего роста населения планеты, нерациональное использование энергии, сырья, неравномерное распределение топливно-энергетических ресурсов среди различных регионов стран мира, их производство и потребление и дальше будут увеличиваться.

Однако энергетические ресурсы планеты не безграничны. При запланированных темпах развития ядерной энергетики суммарные запасы урана будут исчерпаны в первом десятилетии XXI в., но если расход энергии будет происходить на уровне энергетики теплового барьера, то все запасы невосстанавливаемых источников энергии сгорят за 80 лет. Поэтому с точки зрения вещественного содержания основной причиной обострения топливно-энергетической проблемы является увеличение масштабов вовлечения природных ресурсов в хозяйственное обращение и их ограниченное количество на нашей планете. С точки зрения общественной формы такой причиной являются отношения монополистической собственности, которые обусловливают хищническую эксплуатацию природных ресурсов.

Огромные потери энергетических ресурсов имели место в затратной экономике бывшего СССР и странах Восточной Европы. И сейчас еще в странах СНГ на производство единицы национального дохода расходуется в среднем вдвое больше сырья, чем в развитых странах Запада

Основные пути решений топливно-энергетической и сырьевой проблем

С точки зрения вещественного содержания общественного способа производства являются: -- быстрое развитие и использование таких основных видов восстанавливаемой энергии, как солнечная и ветровая, океаническая и гидроэнергия рек. Структурные изменения в использовании существующих невосстанавливаемых видов энергии, а именно: увеличение доли угля в энергобалансе и уменьшение доли нефти и газа, поскольку запасы последних на планете значительно меньшие, а их ценность для химической промышленности намного большая; -- создание экологически чистой угольной энергетики, которая работала бы без выбросов вредных газов. Все это требует больших затрат государства на природоохранные цели. В США уже создана экологически чистая угольная энергетика Страны. Поэтому доля угля в энергобалансе США возросла с 12,5 до 23 %, доля нефти снизилась с 45 до 41 %, а газа -- с 56 до 21 %; -- разработка конкретных мер по соблюдению экологических стандартов: стандартов чистоты воздуха, водных бассейнов, рационального потребления энергии, повышения эффективности своих энергетических систем; -- изучение запасов всех ресурсов с использованием новейших достижений НТР. Как известно, сегодня разведан относительно неглубокий слой земной коры -- до 5 км. Поэтому важно открыть новые ресурсы на большей глубине Земли, а также на дне Мирового океана; -- интенсивное развитие развивающимися странами собственного сырьевого хозяйства, включая перерабатывающие отрасли сырья. Для решения проблемы голода в этих странах необходимо расширять объемы посевных площадей, внедрять передовую агротехнику, высокопродуктивное животноводство, высокоурожайные культуры, эффективные удобрения и средства защиты растений и т. д.; -- поиск эффективных рычагов управления процессом роста народонаселения с целью его стабилизации на уровне 10 млрд человек к началу 22 века;

Прекращение вырубки лесов, особенно тропических, обеспечение их рационального использования; -- формирование у людей экологического мировоззрения, что дало бы возможность рассматривать все экономические, политические, юридические, социальные, идеологические, национальные, кадровые вопросы как в рамках отдельных стран, так и на межнациональном уровне, прежде всего, с точки зрения решения экологических проблем, внедрять на всех уровнях принципы их приоритета; -- комплексная разработка законодательства об охране окружающей среды, в том числе об отходах. Так, в США, Франции и других странах правительство обязано оказывать предприятиям и организациям техническую и финансовую помощь в переработке отходов, извлечении из них ценных компонентов, проведении научно-исследовательских работ в этой сфере, распространять передовой опыт и др. С этой целью используются налоговые льготы, предоставляются субсидии, снижаются тарифы на перевозку вторичного сырья и т. д.; -- наращивание экологических инвестиций.

Начиная с овладения огнем, человек в своей жизнедеятельности постоянно использовал и другие, кроме пищи, источники энергии, его энергетическая мощь постоянно возрастала.

Если при собирательстве и первобытном рыболовстве он затрачивал на питание мощность в 140 Вт, то при подсечно-огневом и первобытном скотоводстве - уже 250 - 300 Вт, а при традиционном земледелии и скотоводстве - около 500 Вт. Но самый быстрый рост мощности человеческого хозяйства начался после второй технологической (промышленной) революции XVIII в., когда были разработаны методы применения энергии ископаемого топлива (в первую очередь каменного угля и нефти) в различных технологиях. Затем была повышена эффективность традиционных источников энергии: воды, ветра и солнца. Наконец, в XX в. началось использование ядерной энергии. В целом энерговооруженность человека возросла в тысячи раз, возникла энергетическая цивилизация - цивилизация большой социоприродной энергетики.

В XX в. мощность, используемая человеком на отопление, освещение, транспорт, промышленное и сельскохозяйственное производство, обработку и передачу информации и т.п., достигла в среднем 2 - 3 кВт/чел.
В настоящее время свои энергетические потребности человечество удовлетворяет в основном за счет углеродсодержащих видов топлива (каменного угля, нефти, газа, дров, сланцев, торфа) и урана. С 1973 по 1998 г. глобальное потребление этих энергоносителей возросло в 5 раз.

При сжигании топлива реализуется первичная (тепловая) энергия, которая может быть преобразована в электрическую с определенным коэффициентом полезного действия (40-44% на тепловых электростанциях, где сжигается углеродсодержащее топливо, и 30 - 33% на атомных электростанциях). Выработка одновременно электрической энергии и горячей воды на теплоэлектроцентралях повышает КПД использования первичной энергии до 80%.

Электрическая энергия - основа современной цивилизации. Во всем мире она рассматривается в качестве самого предпочтительного промежуточного вида энергии, универсального (легко преобразующегося в любых количествах в тепло, свет, механическую энергию и т.п.), передаваемого на значительные расстояния и вызывающего наименьшее загрязнение окружающей среды в местах потребления. Подавляющее большинство машин и устройств, которые использует человечество, содержат электрические цепи и соответствующие узлы, работа которых невозможна без электрической энергии.

Ископаемые виды топлива по-прежнему являются доминирующими среди источников первичной энергии, доля угля была максимальной приблизительно в 1920 г., когда он обеспечивал производство более 70% всего потребляемого топлива; доля нефти достигла максимума в начале 70-х годов XX в., составив немногим больше 40%. Предполагается, что природный газ, который загрязняет окружающую среду меньше, чем нефть и уголь, в будущем станет использоваться шире в мировом производстве энергии. Первичная электроэнергия здесь включает в себя энергию, производимую на ГЭС и АЭС.

Разведанные запасы каменного угля оцениваются в 1280 млрд т. При современном уровне его потребления этих запасов хватит на 200 лет.

Запасы нефти - 137 млрд т (1993 г.) (66% на Среднем Востоке), газа - 142 трлн м3 (40 % в Восточной Европе и СНГ, 36 % - в России, 32% - на Среднем Востоке (данные на 1993 г.)).

Прогнозируемые (неразведанные) запасы нефти в 1993 г. оценивались в 100-120 млрд т, газа - 400 трлн м3,
Если открытие новых месторождений в конечном счете приведет к увеличению его сегодняшних мировых запасов в 4 раза, то современный уровень потребления этого вида топлива сможет оставаться устойчивым до 2230 г. Однако истощение запасов нефти наряду с , связанными с использованием угля, может переориентировать мир на потребление газа. Если потребление газа будет продолжать расти нынешними темпами, составляющими 3,3% в год, то запасы, которые в 4 раза превышают известные сегодня, могут быть исчерпаны к 2054 г.

Таким образом, при современном уровне добычи их запасы кончатся после 2050 г. В общем производстве энергии в 1996 г. на долю нефти приходилось 40%, угля - 28, газа - 23%. АЭС создавали 7% энергии, прочие источники энергии давали 2,6%. Легко видеть, что нефть и газ дают примерно 2/3 потребляемой в мире энергии и являются основой экономики современного общества.

Альтернативные источники энергии - энергия ветра, солнца, геотермальная энергия (энергия горячих подземных вод), энергия течений - пока вносят незначительный вклад в мировое производство энергии.

Важную роль в жизни населения развивающихся стран играют дрова. По данным ФАО, в 1998 г. более 2 млрд человек в , Африки и Латинской Америки (примерно до 90 % сельского и более 30 % городского населения) для приготовления пищи и обогрева используют древесину. На эти цели в расходуется 80 % древесины.

В Непале, 9/10 энергетических потребностей удовлетворяется за счет древесного топлива, в - 82, - 74, - 71, - 64, и - 50%. В деревнях и некоторых женщины и дети проводят от 100 до 300 дней в году за сбором хвороста.

Энергетика является одной из наиболее крупномасштабных отраслей промышленного производства. Это основа развития всех отраслей промышленности, определяющих прогресс в целом.

Вместе с тем самым серьезным фактором загрязнения природной среды являются добыча и использование ископаемых энергоносителей, прежде всего нефти, угля и природного газа, обеспечивающего более 90% мировой потребности в энергии.

Рассмотрим экологические характеристики энергетики, основанной на сжигании углеродсодержащих видов топлива (тепловой энергетики), гидроэнергетики, использующей энергию падающей воды, и альтернативные ее источники.

Воздействие систем производства, передачи и использования энергии на окружающую среду проявляется в таких процессах и явлениях, как:

  1. изъятие территорий для добычи топлива, размещения электростанций и линий электропередачи и захоронения отходов;
  2. загрязнение атмосферы и продуктами сгорания (выбросы в , шлаки, радиоактивные отходы и т.п.);
  3. тепловое (термическое) загрязнение - сброс тепловой энергии электростанции в окружающую среду и повышение температуры среды;
  4. электромагнитное загрязнение - создание электрических, магнитных и электромагнитных полей, создающих угрозу для человека и ;
  5. радиоактивное загрязнение;
  6. затопление полезных территорий (в случае гидроэлектростанций);
  7. воздействие на климат
  8. воздействие на флору и фауну;
  9. наведенная - возникновение при создании энергоустановок, в первую очередь гидроэлектростанций.

Современная индустрия, в особенности такие ее отрасли, как химический синтез, выплавка легких металлов, отличается повы­шенной потребностью в энергии, воде и сырье. Чтобы выплавить 1 т алюминия, необходимо затратить в десятки раз больше воды, чем для производства 1 т стали, а для получения 1 т искусствен­ного волокна приходится использовать в сотни раз больше воды, чем для выработки такого же количества хлопчатобумажной ткани. Нефть и газ стали главными источниками энергии и вме­сте с тем важными сырьевыми ресурсами химической промыш­ленности. Этими обстоятельствами объясняется все возрастаю­щая эксплуатация нефтяных и газовых месторождений. Произ­водство каждого нового синтетического продукта влечет за собой «цепные реакции» в технологии - ннапример, для синтеза пласти­ческих масс требуется большое количество хлора, получение хло­ра предполагает использование в качестве катализатора ртути, а все вместе - огромных затрат энергии, воды и кислорода. В современную индустрию вовлекаются почти все химические элементы, существующие на Земле.

Перед человечеством встал вопрос: надолго ли хватит ему не­обходимых природных ресурсов? Прошли те времена, когда ка­залось, что ресурсы Земли неисчерпаемы. Само деление природ­ных ресурсов на неисчерпаемые и исчерпаемые становится все более условным. Все больше видов ресурсов переходит из первой категории во вторую, Сейчас мы уже задумываемся о возможно­сти исчерпания запасов атмосферного кислорода, а в перспекти­ве такой же вопрос может возникнуть даже о ресурсах солнеч­ной энергии, хотя пока еще поток ее кажется нам практически неисчерпаемым.

Существуют разные прогнозы, касающиеся будущего наших природных ресурсов. Конечно, их следует рассматривать как очень ориентировочные. Разрабатывая такие прогнозы, надо ис­ходить, с одной стороны, из оценки перспектив роста населения и производства и соответственно потребностей общества, а с другой - из наличия запасов каждого ресурса. Однако про­лонгировать современную тенденцию роста населения и произ­водства далеко в будущее было бы рискованно. Так, надо пола­гать, что по мере повышения жизненного уровня в развивающих­ся странах, дающих основной процент прироста населения, об­щий рост должен замедлиться. Кроме того, научно-технический прогресс, несомненно, будет продолжаться в направлении поис­ков более экономных, ресурсосберегагощих технологий, что по­зволит постепенно сокращать потребность во многих природных источниках производства.

Вместе с тем необходимо принять во внимание, что современ­ные среднемировые нормы потребления природных ресурсов нельзя считать оптимальными, поскольку в развивающихся стра­нах они намного ниже, чем в странах экономически развитых. В «третьем мире» среднее потребление продуктов питания по ка­лорийности в 1,5 раза ниже, чем в развитых странах, а по содер­жанию животных белков даже в 5 раз. Для того чтобы сред­ний мировой уровень потребления энергии достиг к 2000 г. со­временного энергопотребления в США, он должен возрасти в 100 раз!

Исходя из сказанного, следует ожидать, по крайней мере, в ближайшие десятилетия, дальнейшего роста потребностей в самых разнообразных природных ресурсах. При оценке их за­пасов важно различать две большие группы ресурсов - нево­зобновимые и возобновимые. Первые, практически не восполня­ются, и их количество неуклонно уменьшается по мере использо­вания. Сюда относятся минеральные ресурсы, а также земельные ресурсы, ограниченные размерами площади земной поверх­ности. Возобновимые ресурсы либо способны к самовосстановле­нию (биологические), либо непрерывно поступают к Земле извне (солнечная энергия), либо, находясь в непрерывном круговороте, могут использоваться повторно (вода). Разумеется, возобнови­мые ресурсы, как и невозобновимые, не бесконечны, но их возоб­новимая часть (ежегодный приход или прирост) может постоян­но использоваться.

Если обратиться к главным типам мировых природных ре­сурсов, то в самом общем виде мы получим следующую картину. Основным видом энергоресурсов пока еще остается мине­ральное топливо - нефть, газ, уголь. Эти источники энергии не­возобновимы, и при нынешних темпах роста их добычи они могут быть исчерпаны через 80-140 лет. Правда, доля этих источни­ков должна снижаться за счет развития атомной энергетики, основанной на использовании «тяжелого» ядерного топлива - расщепляющихся изотопов урана и тория. Но и эти ресурсы не­возобновимы: по некоторым данным, урана хватит всего лишь на несколько десятилетий.

Значение природных ресурсов для жизни общества никак не может уменьшиться по той простой причине, что они остаются единственным источником материального производства. При этом чем меньше производство связано с местными ресурсами, тем более возрастает его зависимость от удаленных источников и тем шире радиус действия таких источников, многие из кото­рых приобретают не только общегосударственное, но и глобаль­ное значение. Напомним о роли нефтяных и газовых месторож­дений Тюменского Севера в хозяйстве нашей страны или нефти Персидского залива в мировой экономике. Добавим, что есть та­кие отрасли народного хозяйства, и прежде всего сельское, кото­рые вообще не могут «эмансипироваться» от местной природной среды и всегда будут к ней привязаны.

Все виды природных ресурсов - тепловые, водные, мине­ральные, биологические, почвенные - связаны с определенными компонентами природного комплекса (геосистемы) и составляют расходуемую часть этих компонентов. Возможность быть израс­ходованными - специфическое свойство природных ресурсов, отличающее их от природных условий. К последним относятся постоянно действующие свойства природных комплексов, не ис­пользуемые для получения полезного продукта, но оказывающие существенное положительное или отрицательное влияние на раз­витие и размещение производства (например, температурный и водный режим, ветры, рельеф, несущая способность грунтов, многолетняя мерзлота, сейсмичность).

Важно различать ресурсы возобновимые и невозобновимые. Некоторые ресурсы возобновляются за счет их постоянного при­тока из Космоса (солнечная энергия), иные - благодаря непре­рывному круговороту вещества в географической оболочке (пресная вода), наконец, третьи - вследствие способности к самовоспроизводству (биологические ресурсы). К невозобно­вимым относятся минеральные ресурсы.

Невозобновимыми считаются ресурсы земных недр. Строго говоря, многие из них могут возобновляться в ходе геологических циклов, но продолжительность этих циклов, определяемая сот­нями миллионов лет, несоизмерима с этапами развития обще­ства и скоростью расходования минеральных ресурсов.

Невозобновимые ресурсы планеты можно разделить на две большие группы:

Более сотни негорючих материалов добываются из земной коры в настоящее время. Минералы образуются и видоизменяются в результате процессов, происходящих в ходе образования земных горных пород на протяжении многих миллионов лет. Использование минерального ресурса включает в себя несколько этапов. Первый из них - это обнаружение достаточно богатого месторождения. Затем - извлечение минерала путем организации некоторой формы его добычи. Третий этап - обработка руды для удаления примесей и превращение его в нужную химическую форму. Последнее - использование минерала для производства различных изделий.

Разработка месторождений полезных ископаемых, залежи которых находятся недалеко от земной поверхности, производится путем поверхностной добычи, устраивая открытые карьеры, открытую добычу методом создания горизонтальных полос, или добыча при помощи землечерпательного оборудования. При расположении полезных ископаемых далеко под землей они извлекаются методом подземной добычи.

Добыча, обработка и использование любого негорючего минерального ресурса вызывает нарушение почвенного покрова и эрозию, загрязняет воздух и воду. Подземная добыча более опасный и дорогостоящий процесс, чем поверхностная добыча, но он в гораздо меньшей степени нарушает почвенный покров. При подземной добыче может происходить загрязнение воды в силу шахтного кислотного дренажа. В большинстве случаев территории, на которых осуществляется добыча, удается восстановить, но это дорогостоящий процесс. Добыча полезных ископаемых и расточительный подход к использованию продуктов, изготавливаемых из ископаемых и древесины, также приводят к созданию большого количества твердых отходов.

Оценить количество реально доступного в смысле добычи полезного минерального ресурса - процесс очень дорогостоящий и сложный. И к тому же, нельзя это определить с большой точностью. Запасы минеральных ресурсов подразделяются на выявленные ресурсы и необнаруженные ресурсы. В свою очередь каждая из этих категорий делится на резервы, то есть те ископаемые, которые можно извлечь с получением прибыли по существующим ценам при существующей технологии добычи, и ресурсы - все обнаруженные и необнаруженные ресурсы, включая те, которые не могут быть извлечены с получением прибыли при существующих ценах и существующей технологии. Большинство опубликованных оценок конкретных невозобновимых ресурсов относится к резервам.

Когда 80% резервов или оцененных ресурсов материала оказываются извлеченными и использованными, ресурс считается исчерпанным, так как извлечение оставшихся 20% обычно не приносит прибыли. Количество извлеченного ресурса и тем самым время исчерпания можно увеличить путем увеличения оцененных резервов, если высокие цены вынудят пойти на поиск новых месторождений, разработку новых технологий добычи, увеличения доли рециркуляции и вторичного использования или на снижение уровня потребления ресурса. Некоторым экономически исчерпанным ресурсам удается найти замену.

Для увеличения запасов сторонники защиты окружающей среды предлагают увеличить долю рециркуляции и повторного использования невозобновимых минеральных ресурсов и снизить неоправданные потери таких ресурсов. Рециркуляция, вторичное использование и снижение количества отходов требует для своей реализации меньше энергетических затрат и в меньшей степени разрушают почву и загрязняют воду и воздух, чем использование первичных ресурсов.

Сторонники защиты окружающей среды призывают индустриальные страны совершить переход от одноразового использования с большим количеством отходов к хозяйству, производящему незначительное количество отходов. Это потребует, кроме рециркуляции и вторичного использования, также привлечения экономических стимулов, определенных действий правительств и людей, а также изменения в поведении и образе жизни населения Земли.

Основными факторами, определяющими степень использования любого источника энергии, являются его оценочные запасы, чистый выход полезной энергии, стоимость, потенциальные опасные воздействия на окружающую вреду, а также социальные последствия и влияние на безопасность государства. Каждый источник энергии обладает преимуществами и недостатками.

Обычную сырую нефть можно легко транспортировать, она является относительно дешевым и имеющим широкое применение видом топлива, обладает высоким значением чистого выхода полезной энергии. Однако доступные запасы нефти могут быть исчерпаны через 40-80 лет, при сжигании нефти в атмосферу выделяется большое количество углекислого газа, что может привести к глобальному изменению климата планеты.

Нетрадиционная тяжелая нефть, остаток обычной нефти, а также добываемая из нефтеносных сланцев и песка, может увеличить запасы нефти. Но она является дорогостоящей, обладает низким значением чистого выхода полезной энергии, требует для переработки большого количества воды и оказывает более вредное воздействие на окружающую среду, чем обычная нефть.

Обычный природный газ дает больше тепла и сгорает более полно, чем другие ископаемые виды топлива, является многосторонним и относительно дешевым видом топлива и обладает высоким значением чистого выхода полезной энергии. Но его запасы могут быть исчерпаны через 40-100 лет, и при его сжигании образуется углекислый газ.

Уголь - самый распространенный в мире вид ископаемого топлива. Он обладает высоким значением чистого выхода полезной энергии при производстве электричества и выработке высокотемпературного тепла для производственных процессов, и относительно дешев. Но уголь чрезвычайно грязен, его добыча опасна и наносит вред окружающей среде, так же как и сжигание, если отсутствуют дорогостоящие специальные устройства контроля за уровнем загрязнения воздуха; выделяет больше углекислого газа на единицу полученной энергии, чем другие ископаемые виды топлива, и неудобно его использовать для движения транспорта и отопления домов, если предварительно не перевести его в газообразную или жидкую форму. Значительное нарушение почвенного покрова при добыче.

Теплота, скрытая в земной коре, или геотермальная энергия, преобразуется в невозобновимые подземные месторождения сухого пара, водяного пара и горячей воды в различных местах планеты. Если эти месторождения расположены достаточно близко к земной поверхности, полученное при их разработке тепло можно использовать для отопления помещений и выработки электроэнергии. Они могут обеспечить энергией на 100-200 лет области, расположенные вблизи месторождений, причем по умеренной цене. Они обладают средним значением чистого выхода полезной энергии и не выделяют углекислый газ. Хотя и этот вид источника энергии приносит много неудобств при добыче и немалое загрязнение окружающей среды.

Реакция ядерного деления - также источник энергии, причем очень перспективный. Основными преимуществами этого источника энергии заключаются в том, что ядерные реакторы не выделяют углекислого газа и иных веществ, вредных для окружающей среды, и степень загрязнения воды и почвенного покрова находится в допустимых пределах, при условии, что весь цикл ядерного топлива протекает нормально. К недостаткам можно отнести то, что очень велики затраты на оборудование для обслуживания этого источника энергии; обычные атомные электростанции могут использоваться только для производства электроэнергии; существует риск крупной аварии; чистый выход полезной энергии низок; не разработаны хранилища для радиоактивных отходов. В силу вышеперечисленных недостатков этот источник энергии в настоящее время мало распространен. Поэтому экологически чистое будущее - за альтернативными источниками энергии.

Оба вида этих ресурсов одинаково важны для нас, но разделение введено потому, что эти две большие группы ресурсов сильно отличаются друг от друга.

Возобновимые ресурсы заслуживают особого внимания. Весь механизм их возобновления является, в сущности, проявлением функционирования геосистем за счет поглощения и трансформации лучистой энергии Солнца - этого первоисточника всех возобновимых ресурсов. Поэтому в своем размещении они подчинены универсальным географическим за­кономерностям - зональности, секторности, высотной ярусности. Отсюда следует, что исследование формирования и размещения возобновимых ресурсов непосредственно относится к сфере фи­зической географии. Возобновимые ресурсы следует рассматри­вать как ресурсы будущего: в отличие от невозобновимых, они при рациональном использовании не обречены на полное исчез­новение, и их воспроизводство до известной степени поддается регулированию (например, с помощью мелиорации лесов можно увеличить их продуктивность и выход древесины).

Надо заметить, что антропогенное вмешательство в биологи­ческий круговорот сильно подрывает естественный процесс во­зобновления биологических ресурсов (и производных от них). По­этому в результате хозяйственной деятельности реальные биоло­гические ресурсы, как правило, ниже потенциальных. Так, леса на Земле истреблены на обширных площадях, а в сохранивших­ся лесах ежегодный прирост древесины часто в 3 - 4 раза мень­ше, чем в ненарушенных древостоях; нерациональное использова­ние естественных пастбищ ведет к снижению их продуктивности. К производным от биологического круговорота относятся также ресурсы свободного кислорода в атмосфере. Их восполнение в процессе фотосинтеза неуклонно сокращается, а техногенное расходование (в основном при сжигании органического топлива) возрастает.

Рассмотрим возобновимые ресурсы:

Он возобновляется в основном в процессе фотосинтеза растений; в естественных условиях ба­ланс кислорода поддерживается его расходом на процессы ды­хания, гниения, образования карбонатов. Уже сейчас человече­ство использует около 10% (а по некоторым подсчетам - даже больше) приходной части кислородного баланса в атмосфере. Правда, практически убыль атмосферного кислорода пока не ощущается даже точными приборами. Но при условии ежегодно­го 5-процентного роста потребления кислорода на промышленно-энергетические нужды его содержание в атмосфере уменьшится, по расчетам Ф. Ф. Давитая, на 2/3, т. е. станет критическим для жизни людей через 180 лет, а при ежегодном росте на 10% - уже через 100 лет.

Пресная вода на Земле ежегодно возобновляются в виде атмосферных осадков, объем которых равен 520 тыс. км 3 . Однако практически при водохозяйственных расчетах и про­гнозах следует исходить лишь из той части осадков, которая сте­кает по земной поверхности, образуя водотоки. Это составит 37 - 38 тыс. км 3 . В настоящее время на хозяйственно-бытовые нужды отвлекается в мире 3,6 тыс. км 3 стока, но фактически ис­пользуется больше, так как сюда надо добавить еще ту часть стока, которая расходуется на разбавление загрязненных вод; в сумме это составит 8,2 тыс. км 3 , т. е. более 1/5 мирового речного стока. По М. И. Львовичу, к 2000 г. мировая потребность в воде превысит годовой объем стока, если принципы водопользования не изменятся. Если же будет полностью прекращен сброс сточ­ных вод, то годовое потребление воды составит около 7 тыс. км 3 , но эта вода уже не вернется в реки, т. е. составит безвозвратные потери (за счет испарения с орошаемых полей и водохранилищ, а также использования в производстве). Дополнительные резер­вы водных ресурсов - опреснение морской воды, использование айсбергов.

Большое количество пресной воды подвергается загрязнению в результате деятельности человека. Давайте рассмотрим это на примере г. Москвы:

Москва первый по величине и по значению город России, и из-за своей величины в ней сосредоточено огромное количество промышленных предприятий. Объем промышленных стоков не поддается ни какому описанию. Наряду с промышленными стоками большую роль играет тепловое загрязнение. Повышение температуры грунтовых вод сказывается на окружающей природе. Ниже города Москва-река не замерзает практически никогда, она превратилась в огромную сливную канаву для человеческой жизнедеятельности. Источниками водоснабжения Москвы служат река Москва и ее притоки, а также подземные воды, как те, что формируются в бассейне р. Москвы благодаря поверхностному стоку, так и воды глубоких горизонтов, не связанные с поверхностным стоком.

Запасы подземных вод в Московском регионе недостаточны для стабильного обеспечения хозяйственно-питьевых нужд города, в связи с чем используются поверхностные источники.

В черте города водный фонд представлен р. Москвой и более 70 малыми реками и ручьями общей протяженностью 165,0 км. Полностью открытое русло сохранено у семи рек: Яузы, Сетуни, Сходни, Раменки, Очаковки, Ички и Чечеры. Остальные реки частично или полностью заключены в коллекторные системы и служат для отведения поверхностного стока. Кроме загрязненного поверхностного стока на качественное состояние рек оказывает негативное влияние сброс недостаточно очищенных сточных вод промышленных предприятий и городских станций аэрации.

Ниже впадения канала Москва-Волга в р. Москву расход воды реки складывается следующим образом: 5 куб. м/с - расход воды р. Москвы ниже Рублевского водозабора; - 30-35 куб. м/с - проектный расход воды из канала Москва-Волга; 10 куб. м/с - поверхностный сток (от притоков р. Москвы в черте города); 66 куб. м/с сточные воды городской канализации, сбрасываемой в р. Москву; 5 куб. м/с - сточные воды промышленных предприятий, поступающие в реку помимо общегородских сетей канализации.

Бассейн р. Москвы в черте г. Москвы находится под воздействием промышленного комплекса, оказывающего существенное влияние на изменение химического состава воды как р. Москвы, так и ее притоков. В столице насчитывается около 30 предприятий (не считая ТЭЦ и станций аэрации), направляющих от 41 тыс. до 39850 тыс. куб. м /год сточных вод в рр. Сходня, Сетунь, Яуза, Пехорка, Москва и др. В целом р. Москва в черте г. Москвы получает до 1767540 тыс. куб. м/год промышленных и хозяйственно-бытовых сточных вод от ведущих отраслей, базирующихся в регионе.

Поверхностный сток с территории города формируется за счет талых снеговых и дождевых вод, а также поливо-моечных вод. По районам г. Москвы величина модуля стока изменяется в пределах 5,64 (Железнодорожный район) - 15,0 л/с кв. Км (Свердловский район). Средний для города Москвы модуль стока составляет 9 л/с кв. км. В общем наблюдается увеличение модуля стока от окраин города к центру. Поверхностный сток с территории города не очищается от загрязнений и прямо попадает в водные объекты, неся с собой большое количество органических, взвешенных веществ, нефтепродуктов. В целом по г. Москве в течение года с поверхностным стоком поступает 3840 тонн нефтепродуктов, 452080 тонн взвешенных веществ, 173280 тонн хлоридов, 18460 тонн органических веществ (по БПК). В результате с поверхностным стоком в водные объекты города попадает нефтепродуктов в 1,8 раз, а взвешенных веществ почти в 24 раза больше, чем со сточными водами предприятий. Большая часть загрязнений: нефтепродуктов - 63%, взвешенных веществ - 75%, органических веществ - 64%, хлоридов - 95%, поступает в р. Москву с поверхностным стоком в зимне-весенний период.

Гидрогеологическая обстановка в г. Москве сложилась под воздействием длительного и недопустимо интенсивного водоотбора из артезианских водоносных горизонтов карбона, а с другой стороны, характеризуется развитием процессов подтопления грунтовыми водами и подпором от гидротехнических сооружений. Увеличивающаяся разница в напорах артезианских и грунтовых вод способствует перетеканию загрязненных грунтовых и поверхностных вод вниз, к питьевым горизонтам карбона. В наибольшей степени эти процессы проявляются там, где отсутствует глинистая разделяющая толща верхней юры, лежащая между грунтовыми и артезианскими водами.

Главные источники загрязнения подземных вод в Москве таковы: утечки из канализационных коллекторов, просачивание загрязненных атмосферных осадков сквозь загрязненные почвы, засыпанные и застроенные свалки, утечки и фильтрация из очистных сооружений, технологических коммуникаций и с канализированных и неканализированных промплощадок.

Исторически сложился прочный обычай размещать свалки в отработанных карьерах и оврагах, то есть как можно ближе к грунтовым водам; располагать заводы, очистные сооружения, поля фильтрации, склады - в речных долинах, т.е. там, где естественная защита подземных вод зачастую отсутствует.

Наиболее загрязнены на территории г. Москвы грунтовые воды. Их загрязнение связано главным образом с чрезвычайно широким распространением жидких коммунальных отходов, а также газообразных отходов автотранспорта, промышленных предприятий, ТЭЦ и др. Компоненты-загрязнители представлены хлоридами, сульфатами, органическими веществами, азотистыми соединениями и тяжелыми металлами.

Грунтовые воды с таким характером загрязнения преимущественно пресные, смешанного, вследствие загрязнения состава. Изменение степени их загрязнения подчиняется пространственным закономерностям: концентрации компонентов-загрязнителей возрастают в направлении движения вод от возвышенных участков рельефа - центральных частей междуречных пространств к пониженным - речным долинам, озерам, котлованам, водохранилищам. Градиент концентраций при этом возрастает от десятков до первых сотен миллиграммов на литр. Одновременно увеличивается и общая минерализация грунтовых вод.

Они складываются из растительной и жи­вотной массы, единовременный запас которой на Земле измеря­ется величиной порядка 2,4 10 12 т (в пересчете на сухое веще­ство). Ежегодный прирост биомассы в мире (т. е. биологическая продуктивность) составляет примерно 2,3 · 10 11 т. Основная часть запасов биомассы Земли (около 4/5) приходится на лесную расти­тельность, которая дает более 1/3 общего ежегодного прироста живой материи. Человеческая деятельность привела к значитель­ному сокращению общей биомассы и биологической продук­тивности Земли. Правда, заменив часть бывших лесных площа­дей пашнями и пастбищами, люди получили выигрыш в качест­венном составе биологической продукции и смогли обеспечить питанием, а также важным техническим сырьем (волокно, кожи и др.) растущее население Земли.

Продовольственные ресурсы составляют не более 1% от об­щей биологической продуктивности суши и океана и не свыше 20% от всей сельскохозяйственной продукции. С учетом роста населения и необходимости обеспечить полноценным питанием все население Земли к 2000 г. производство продуктов растение­водства должно быть увеличено, по крайней мере в 2 раза, а про­дуктов животноводства - в 3. Это значит, что производство пер­вичной (растительной) биологической продукции, включая корма для животных, необходимо увеличить не менее чем в 3-4 раза. Расчеты на расширение возделываемых земель вряд ли имеют под собой серьезные основания, так как резервы пригодных для этого площадей крайне ограничены. Очевидно, выход следует ис­кать в интенсификации сельского хозяйства, включая развитие поливного земледелия, механизации, селекции и т. д., а также в рациональном использовании биологических ресурсов Океана. Необходимые для этого условия и ресурсы имеются, однако рас­четы некоторых авторов на возможность прокормления на Земле десятков и сотен миллиардов и даже нескольких триллионов че­ловек нельзя расценивать иначе как утопические.

Из других биологических ресурсов важнейшее значение име­ет древесина. Сейчас на эксплуатируемых лесных площадях, со­ставляющих 1/3 всей лесной площади суши, ежегодная заготовка древесины (2,2 млрд. м 3) приближается к годовому приросту. Между тем потребность в лесоматериалах будет расти. Дальнейшая эксплуатация лесов должна осуществляться лишь в рамках их возобновимой части, не затрагивая «основного капитала», т. е. площадь лесов не должна уменьшаться, вырубка должна сопровождаться лесовосстановлением. Следует, кроме того, по­вышать продуктивность лесов путем мелиорации, более рацио­нально использовать древесное сырье и по мере возможностей заменять его другими материалами.

Наконец, несколько слов необходимо сказать о земельных, или, точнее, территориальных ресурсах. Площадь земной поверх­ности конечна и невозобновима. Почти все благоприятные для освоения земли уже, так или иначе, используются. Остались не­освоенными преимущественно площади, освоение которых требу­ет больших затрат и технических средств (пустыни, болота и др.) или практически непригодные для использования (ледни­ки, высокогорья, полярные пустыни). Между тем с ростом насе­ления и дальнейшим научно-техническим прогрессом потребует­ся все больше площадей для строительства городов, электро­станций, аэродромов, водохранилищ, растет потребность в сель­скохозяйственных и рекреационных угодьях, многие площади необходимо сохранить как заповедники и т. д. Все больше зе­мель «съедают» коммуникации и крупные инженерные сооруже­ния. В России только под строительные площадки для электро­станций в 1975-2000 гг. потребовалось до 25 тыс. км 2 площади, если ориентироваться на станции средней мощности. Под искус­ственными водохранилищами на Земле уже занята площадь, превышающая акваторию Каспийского моря, и размеры этой площади имеют тенденцию к дальнейшему росту. Надо принять во внимание, что, помимо прямой потери земель за счет затопле­ния, создание водохранилищ часто ведет еще и к косвенным по­терям земельных ресурсов, точнее - к ухудшению их качества на примыкающих к водохранилищам территориях вследствие подтопления (и, как результат, заболачивания или засоления). Сотни тысяч квадратных километров на Земле находятся под от­валами, терриконами, выработанными торфяниками, свалками.

Перспективы решения проблем, связанных с исчерпаемостью земельных ресурсов, вряд ли следует сводить к фантастическим проектам расселения людей в высоких башнях, на плавучих платформах, на дне Океана и в глубинах земной коры. Неизбеж­ность таких решений некоторые авторы обосновывают тем, что экстраполируют современные темпы роста населения на неопре­деленно далекое будущее. При такой гипотетической ситуации через 700 лет на каждого жителя нашей планеты пришлось бы всего лишь по 1 м 2 площади. Однако для таких экстраполяций нет никаких оснований.

Реалистический путь, прежде всего предполагает перестройку существующего использования земель на научной основе, т. е. рациональную организацию территории. Для каждого уча­стка должна быть определена оптимальная социальная функция. Разумеется, рациональная организация территории предпо­лагает и рекультивацию земель, нарушенных предшествующим хозяйственным использованием, и интенсификацию сельского хо­зяйства, и продуманный подход к созданию водохранилищ, и многое другое.

В современном мире возникает достаточно много проблем связанных с добычей сырьевых ресурсов. Как экономические, так и технические. Самая актуальная – это незнание реальных данных, о том сколько ресурсов осталось. Рассмотрим ее на двух примерах.

Доказанные запасы нефти в мире оцениваются в 140 млрд т, а ежегодная добыча составляет около 3,5 млрд т. Однако вряд ли стоит предрекать наступление через 40 лет глобального кризи­са в связи с исчерпанием нефти в недрах Земли, ведь экономи­ческая статистика оперирует цифрами доказанных запасов, то есть запасов, которые полно­стью разведаны, описаны и исчис­лены. А это далеко не все запа­сы планеты. Даже в пределах многих разведанных месторож­дений сохраняются неучтенные или не вполне учтенные нефте­носные секторы, а сколько мес­торождений еще ждет своих от­крывателей.

За последние два десятилетия человечество вычерпало из недр более 60 млрд т нефти. Вы ду­маете, доказанные запасы при этом сократились на такую же ве­личину? Ничуть не бывало. Если в 1977 г. запасы оценивались в 90 млрд т, то в 1987 г. уже в 120 млрд, а к 1997 г. увеличи­лись еще на два десятка милли­ардов. Ситуация парадоксальна: чём больше добываешь, тем боль­ше остается. Между тем этот гео­логический парадокс вовсе не кажется парадоксом экономи­ческим. Ведь чем выше спрос на нефть, чем больше ее добывают, тем большие капиталы вливают­ся в отрасль, тем активнее идет разведка на нефть, тем больше людей, техники, мозгов вовлека­ется в разведку и тем быстрее от­крываются и описываются новые месторождения. Кроме того, совершенствование техники добы­чи нефти позволяет включать в состав запасов ту нефть, наличие (и количество) которой было ра­нее известно, но достать которую было нельзя при техническом уровне прошлых лет. Конечно, это не означает, что запасы не­фти безграничны, но очевидно, что у человечества есть еще не одно сорокалетие, чтобы совер­шенствовать энергосберегающие технологии и вводить в оборот альтернативные источники энер­гии.

Наиболее яркой особеннос­тью размещения запасов нефти является их сверхконцентрация в одном сравнительно неболь­шом регионе - бассейне Пер­сидского залива. Здесь, в араб­ских монархиях Иране и Ира­ке, сосредоточены почти 2/3 доказанных запасов, причем большая их часть (более 2/5 мировых запасов) приходится на три аравийские страны с не­многочисленным коренным насе­лением - Саудовскую Аравию, Кувейт и ОАЭ. Даже с учетом огромного количества иностран­ных рабочих, наводнивших эти страны во второй половине XX в., здесь насчитывается не­многим больше 20 млн чел. - около 0,3% мирового населения.

Среди стран, обладающих очень большими запасами (бо­лее 10 млрд т в каждой, или более 6% мировых), - Ирак, Иран и Венесуэла. Эти страны издавна имеют значительное население и, более или менее развитую экономику, а Ирак и Иран - и вовсе старейшие цен­тры мировой цивилизации. По­этому высокая концентрация в них нефтяных запасов не кажет­ся столь вопиюще несправедли­вой, как в трех аравийских мо­нархиях, где в нефти и нефте­долларах купаются вчерашние неграмотные и полудикие кочев­ники-скотоводы.

Россия с ее семью миллиарда­ми тонн - даром что крупнейшая страна мира - сильно отстает от шести "великих нефтяных дер­жав". Мы не так уж намного впе­реди Мексики и Ливии. Слабым утешением может служить то, что США и Китай обладают еще меньшими запасами. Впрочем, о запасах США - особый разго­вор. Многие аналитики считают, что эта страна сознательно за­нижает свои нефтяные запасы, чтобы, по возможности, беречь свою нефть в недрах "на чер­ный день" и в то же время, при­бедняясь таким образом, утвер­ждать свое присутствие на Ближ­нем Востоке, мотивируя это "жизненными интересами".

Во всех крупных ре­гионах мира, кроме зарубежной Европы и территории СССР, от­ношение запасов нефти по состоянию на 1997 г. к запасам 1977 г. составляет более 100%. Даже Северная Америка, несмотря на "консервирование запасов" в США, значительно увеличила об­щие доказанные запасы благо­даря интенсивной разведке в Мексике.

В Европе исчерпание запасов связано со сравнительно неболь­шой природной нефтеносностью региона и очень интенсивной до­бычей в последние десятилетия:форсируя добычу, страны Запад­ной Европы стремятся разрушить монополию ближневосточных эк­спортеров. Однако шельф Северного моря - главная нефтя­ная бочка Европы - не бесконеч­но нефтеносен.

Что же касается заметного уменьшения доказанных запа­сов на территории СССР, то это связано не столько с физическим исчерпанием недр, как в Запад­ной Европе, и не столько с же­ланием попридержать свою нефть, как в США, сколько с кризисом в отечественной гео­логоразведочной отрасли. Тем­пы разведки новых запасов от­стают от темпа других стран.

Единой системы учета запасов угля и его классификации не су­ществует. Оценки запасов пе­реcматриваются как отдельными специалистами, так и специали­зированными организациями. На XI сессии Мировой энергети­ческой конференции (МИРЭК) в 1980 г. достоверные запасы углей всех видов были определены в 1320 млрд т, а на следующей сес­сии, а 1983 г. - в 1520 млрд т, в том числе каменных ("битуминозных"), включая антрацит -920 млрд т, бурых (" суббитуминозных" и пигнитов) - 600 млрд т. Из­влекаемыми с технико-экономи­ческой точки зрения признаются пить 2/3 достоверных запасов (на начало 90-х гг., по оценке МИРЭС, - около 1040 млрд т).

Наибольшими за пределами тер­ритории бывшего Советского Со­юза достоверными запасами располагают США (четверть мировых запасов), КНР (1/6), Польша/ ЮАР и Австралия (по 5-9% миро­вых запасов), более 9/10 досто­верных запасов каменного угля, извлекаемых с использованием существующих в настоящее вре­мя технологий (оцениваемых в целом по миру примерно 515 млрд т) сосредоточено, по оценке МИРЭК 1983 г, в США (1/4), на территории бывшего СССР (более 1/5), КНР (около 1/5), ЮАР (более 1/10), ФРГ, Ве­ликобритании, Австралии и Польши. Из других промышленно развитых стран значительными за­пасами каменного угля распола­гают Канада и Япония, из разви­вающихся - в Азии - Индия и Ин­донезия, в Африке - Ботсвана, Свазиленд, Зимбабве и Мозамбик, в Латинской Америке - Колумбия и Венесуэла.

Наиболее экономична разработка месторождений каменного угля открытым способом - карье­рами. В Канаде, Мозамбике и Венесуэле этим способом могут разрабатываться до 4/5 всех за­пасов, в Индии - 2/3, в Австра­лии - около 1/3, в США - более 1/5, в Китае - 1/10. Эти запасы используются более интенсивно, и доля угля, разрабатываемого от­крытым способом, составляет, например, в Австралии более 1/2, в США - боле 3/5.

Существенное значение имеет качественный состав углей, в час­тности, доля коксующихся углей.

Наиболее велика их доля в общих запасах угля в Австралии (около 3/4), Германии (3/5); в КНР и США она составляет более 1/3, в Индии - почти 1/3, в Польше1/5, в Великобритании - 1/10. Доля коксующихся углей в добыче, как правило, больше их доли в запасах. В связи с обострением во многих странах экологических проблем и устрожением природоохранного законодательства в качестве серьезного недостатка угля рассматривается высокая его сернистость. Добыча каменного угля в мире ведется на уровне около 3,5 млрд т в год, бурого - около 1 млрд т в год.

Наибольшее количество каменного угля добывается в КНР (более 1 млрд т в год), в США (более 850 млн т при суммарной добыче угля около 1 млрд т), в Индии (свыше 250 млн т), в ЮАР (200 млн т), в России (200 млн т), в Австралии (около 200 млн т) и в Польше (140-150 млн т в год). В 50-80-е гг. в ряде промышленно развитых стран Европы (в частности, в ФРГ, Франции, Великобритании), в Японии, в ряде районов США, где условия добычи неблагоприятны и где значительная часть добываемых углей имеет высокую сернистость, каменноугольная промышленность испытала острый кризис. Сокращение добычи угля, особенно в основных традиционных районах его добычи, имело далеко идущие социальные последствия; эти районы (например, Рур в ФРГ, Север Франции, Аппалачи в США) стали районами хронической экономической депрессии и массовой безработицы, что стимулировало интенсификацию структурной перестройки их экономики, существенно повлияло на специализацию. Иными тенденциями развития отличалась угольная промышленность Австралии, ЮАР и Канады, где происходил рост угледобычи с ориентаци­ей главным образом на экспорт. Доля этих трех стран в мировой добыче каменного угля, составлявшая в начале 60-х гг. несколько процентов, уже в середине 80-х г. превысила 1/10, а в мировом экспорте достигла 2/5, причем Австралия обогнала США в качестве крупнейшего экспортера каменного угля.

Рост добычи в Австралии в значительной мере обусловлен большим спросом на уголь со стороны Японии. Экспортной ориентации угольной промышленности Австралии благоприятствует и то обстоятельство, что крупные месторождения каменного угля, пригодные для открытой разработки, расположены недалеко от побережья. Во многом спросом Японии объясняется и развитие угледобычи в западных провинциях Канады, где в освоении месторождений и создании соответствующей.инфраструктуры активно участвовал японский капитал. Быстрое развитие каменноугольной промышленности в ЮАР, вышедшей по добыче каменного угля на второе место среди стран с рыночной экономикой, обусловлено наличием крупных запасов углей (в основном энергетических), отсутствием собственных запасов нефти и природного газа, очень дешевой рабочей силой и созданием мощной инфраструктуры в расчете на крупный экспорт угля (построен специальный угольный порт Ричардс-Бей и магистральная железная дорога к порту из района угольных разработок в Трансваале). Во всех этих странах необычайно высока экспортность каменного угля (от 1/4 в ЮАР до более чем 4/5 в Канаде); в этом отношении с ними схожа Колумбия, вошедшая в 80-е гг. в число значительных производителей (около 20 млн т в год) и экспортеров каменного угля.

Из общей мировой добычи каменного угля на экспорт идет около 11% (т. е. более 400 млн т в год на начало 90-х гг.), из которых более 4/5 отправляется морским транспортом. В 70-е гг. 2/3 экспорта приходилось на коксующиеся угли, но в связи с кризисными явлениями в черной металлургии и сокращением удельных расходов кокса в доменном производстве, а также ростом спроса на энергетические угли со стороны теплоэлектроэнергетики быстрее стал расти спрос на энергетические марки угля. К началу 90-х гг. экспорт энергетических и коксующихся углей примерно сравнялся, а перевозки энергетических углей морем в 1990 г. впервые оказались больше, чем коксующихся. В том же году Европейское экономическое сообщество обогнало по ввозу угля Японию.

Основные направления вывоза угля: из Австралии и Канады - в Японию, из США и ЮАР - в Западную Европу. ФРГ, еще сравнительно недавно - в 70-80-е гг. -бывшая крупным нетто-экспортером коксующегося угля и крупнейшим в мире экспортером кокса, превратилась в нетто-импортера угля с неуклонно сокращающимися мощностями и добычей угля. Почти на нет сошел экспорт угля и из Великобритании - страны, которая в начале XX в. была крупнейшим поставщиком угля на мировой рынок.

Подавляющая часть разведанных запасов бурого угля и его добычи сосредоточена в промышленно развитых странах. Раз­мерами запасов выделяются США, Германия и Австралия, а наибольшее значение добыча и ис­пользование бурого угля имеют в энергетике Германии и Греции. Большая часть бурого угля (более 4/5) потребляется на ТЭС, распо­ложенных вблизи разработок. Дешевизна этого угля, добываемо­го почти исключительно открытым способом, обеспечивает, несмот­ря на его низкую теплотворную способность, производство деше­вой электроэнергии, что привлека­ет к районам крупных буроугольных разработок электроемкие производства. В капитале, инвес­тируемом в буроугольную отрасль, велика доля средств электроэнер­гетических компаний. В отличие от каменноугольной промышленнос­ти буроугольную подотрасль структурный кризис практически не затронул.

Как видно из всего выше сказанного, проблемы связанные с сырьевыми ресурсами очень остры в наше время. Запасы ресурсов истощены. В основном это энергетические ресурсы. Как следствие необходимо обратить внимание к возобновимым ис­точникам энергии. Среди них сейчас наибольшее практическое значение имеет «белый уголь» - энергия водных потоков, однако полное использование гидроэнергоресурсов мира могло бы обеспечить только половину современных потребностей в электроэнергии. Крупнейший возобновимый энергоресурс - лучи Солнца. Те­оретически можно ежегодно «перехватывать» почти столько сол­нечного тепла, сколько содержится во всем ископаемом топливе. Однако практически это неосуществимо из-за малой плотности потока солнечных лучей: солнечные энергетические установки требуют больших площадей. Аналогичным образом дело обстоит с энергией приливов, ветра и внутриземного тепла. Использова­ние этих источников эффективно только в отдельных благоприят­ных локальных условиях (на побережьях с особо высокими при­ливами, в районах с устойчивыми сильными ветрами, в местах скопления горячих источников и т. п.).Наибольшие потенциальные возможности таит в себе исполь­зование «легкого» ядерного топлива - изотопа водорода дейте­рия (путем синтеза из него ядер гелия). Хотя этот источник так­же в сущности невозобновимый, но практически он неисчерпаем, так как полное использование термоядерной энергии в миллио­ны раз превысило бы эффект всех других реальных энергических ресурсов. Применение «легкого» ядерного топлива станет возможным, когда будут найдены способы управления термоядер­ной реакцией.

Также существует опасность растраты неэнергетических ресурсов: биологических, минеральных, пресной воды, свободного кислорода. Выходом из этой проблемы может быть вторичное использование отходов, экономичное использование воды, переход к более долговечным и легким материалам (углепластикам).

Главное чтобы люди знали о этой проблеме и старались её решить, а не сидели «сложа руки».

1. А.Г. Исаченко, «География в современном мире». /1998 г.

2. Государственный доклад о состоянии окружающей среды в г. Москве / 1992 г.

3. Г. В. Стадницкий, А. И. Родионов. «Экология».

4. Газета «География». №3, №5 ,№6 /1999 г.

5. В. В. Плотников «Введение в экологическую химию», 1989.


Причины возникновения глобальной сырьевой проблемы

Главной причиной возникновения глобальной сырьевой проблемы следует считать постоянный рост объемов минерального сырья, извлекаемого из недр Земли, особенно ускорившийся во второй половине XX в. Достаточно привести данные о том, что только в 1960–1980 гг. было извлечено 50 % меди и цинка, 55 % железной руды, 60 % алмазов, 65 % никеля, калийных солей и фосфоритов и около 80 % бокситов от общего объема их добычи с начала века. В результате началось истощение многих бассейнов и месторождений, ускорилось обеднение многих используемых руд, возросло количество извлекаемой из недр пустой породы. Эту явно негативную тенденцию часто иллюстрируют примером с медной рудой, добываемой в США, Замбии, некоторых других странах. Так, на медных рудниках американского штата Монтана содержание меди в руде снизилось с 30 % на начальном этапе освоения до 0,5 %. Этот процесс затронул разные виды горно-металлургического, горно-химического и других видов сырья.

Одновременно с ростом добычи во многих случаях стали ухудшаться и горно-геологические условия залегания и извлечения полезных ископаемых. А стремление как-то компенсировать такое ухудшение путем освоения богатых месторождений в новых сырьевых районах, в свою очередь, привело к заметному увеличению территориального разрыва между центрами добычи и потребления, означающему неизбежный рост затрат на перевозку. Исследователи отмечают высокую зависимость стран Западной Европы, Японии и США от импорта многих важных видов минерального сырья.

Таблица 1. Зависимость США от импорта некоторых видов минерального сырья

Вид минерального сырья Доля импорта в потреблении (%) Главные поставщики
Марганец 100 Габон, Бразилия, ЮАР
Графит 100 Мексика, Китай, Бразилия
Платиноиды 98 ЮАР, Канада, Великобритания, Россия
Бокситы и глинозём 97 Австралия, Гвинея, Ямайка, Суринам
Алмазы промышленные 92 ЮАР, Великобритания, ДРК
Кобальт 92 ДРК, Замбия, Канада
Титан 91 Таиланд, Бразилия, Австралия
Хром 82 ЮАР, Зимбабве, Турция
Калийные соли 72 Канада
Олово 77 Бразилия, Малайзия, Боливия
Никель 76 Канада, Австралия, Норвегия
Цинк 74 Канада, Испания, Мексика
Серебро 69 Канада, Мексика, Великобритания
Вольфрам 62 Канада, Китай, Боливия
Железная руда 37 Канада, Либерия, Бразилия
Медь 26 Чили, Перу, Канада

К этому можно добавить и ухудшение экологической обстановки, что всегда бывает связано с преобладанием экстенсивных методов ведения сырьевого хозяйства.

В конце 60-х гг. Римский клуб поставил целью исследовать ближайшие и отдаленные последствия крупномасштабных решений, связанных с выбранными человечеством путями развития. Было предложено использовать системный подход для изучения глобальной проблематики, взяв на вооружение метод математического компьютерного моделирования. Результаты исследования были опубликованы в 1972 г. в первом докладе Римскому клубу под названием “Пределы роста”. Авторы доклада пришли к выводу, что если современные тенденции роста численности населения, индустриализации, загрязнения природной среды, производства продовольствия и истощения ресурсов будут продолжаться, то в течение следующего столетия мир подойдет к пределам роста, произойдет неожиданный и неконтролируемый спад численности населения и резко снизится объем производства.

Однако они считали, что можно изменить тенденции роста и прийти к устойчивой в долгосрочной перспективе экономической и экологической стабильности. И это состояние глобального равновесия нужно установить на уровне, который позволит удовлетворить основные материальные нужды каждого человека и даст каждому равные возможности для реализации личного потенциала.

Мировая модель Медоуза была построена специально для исследования пяти основных глобальных процессов:

· быстрой индустриализации,

· роста численности населения,

· увеличивающейся нехватки продуктов питания,

· истощения запасов невозобновимых ресурсов,

· деградации природной среды.

Построенная ими модель, как и любая другая, несовершенна, чрезмерно упрощена и остается незавершенной. Понимая предварительный характер нашей работы, мы все же сочли важным опубликовать результаты работы модели и сделанные нами выводы сейчас.

Данная модель уже разработана достаточно, чтобы принести пользу людям, принимающим решения. Кроме того, нам кажется, что основные тенденции, проявившиеся в поведении модели, имеют настолько фундаментальный и общий характер, что едва ли наши широкие выводы будут серьезно опровергнуты дальнейшими исследованиями.

Вот эти выводы:

1. Если современные тенденции роста численности населения, индустриализации, загрязнения природной среды, производства продовольствия и истощения ресурсов будут продолжаться, в течение следующего столетия мир подойдет к пределам роста. В результате, скорее всего, произойдет неожиданный и неконтролируемый спад численности населения и резко снизится объем производства.

2. Можно изменить тенденции роста и прийти к устойчивой в долгосрочной перспективе экономической и экологической стабильности. Состояние глобального равновесия можно установить на уровне, который позволяет удовлетворить основные материальные нужды каждого человека и дает каждому человеку равные возможности реализации личного потенциала.

Если народы мира выберут не первый, а второй путь, то чем раньше они начнут работать, чтобы вступить на него, тем больше у них шансов на успех.

Все составляющие описываемого исследования - численность населения, производство продовольствия, загрязнение природной среды, расход невозобновимых ресурсов - растут. Каждый год они увеличиваются по закону, который математики называют экспоненциальным ростом. Экспоненциальный рост величины означает, что за фиксированый период времени она увеличивается в фиксированное число раз.

Экспоненциальный рост - обычный процесс в биологических, финансовых и многих других системах. Экспоненциальный рост - явление динамическое. Значит, величины в этом процессе изменяются со временем. Когда множество различий величин в системе растет одновременно и все они находятся в сложной взаимосвязи, анализ причин роста и будущего поведения системы становится очень сложным.

На протяжении последних 30 лет в МТИ (Массачусетском технологическом институте) разрабатывается новый метод динамического изучения сложных систем. Этот метод был назван системной динамикой. В его основе лежит утверждение, что поведение системы часто зависит как от ее структуры - множества замкнутых, взаимосвязанных, нередко запаздывающих взаимодействий между составляющими элементами, - так и от самих элементов. Модель мира, описанная Медоузом, построена по принципам системной динамики.

Экстраполяция существующих тенденций - проверенный временем способ заглянуть в будущее (особенно в ближайшее и особенно, если на рассматриваемые величины не слишком влияют другие тенденции, наблюдаемые в системе). Конечно, ни один из пяти исследуемых факторов нельзя назвать независимым. Каждый постоянно взаимодействует с остальными.

Численность населения не может увеличиваться, если нет продуктов питания, производство продуктов питания растет с ростом капитала, рост капитала требует ресурсов, отработанные ресурсы увеличивают загрязнение, загрязнение среды влияет на рост численности населения и производство продовольствия. Кроме того, каждый из этих факторов через долгое время начинает, испытывать воздействие обратных связей.

В этой первой модели мира исследовали только качественные характеристики поведения системы “население - капитал”. Под характеристиками поведения понимаются определенные тенденции переменных систем (численности населения, например, или уровня загрязнения среды) к изменению с течением времени.

Однако настоятельно необходимо хоть сколько-нибудь понять причины роста, его пределы и возможное поведение модели, когда она подходит к этим пределам.

Все оценки в модели (численность населения, объем капитала, уровень загрязнения среды и пр.) отсчитываются от значений 1900 г. С 1900 по 1970 г. все переменные в общем соответствовали действительным значениям. Численность населения, составлявшая в 1900 г. до 1,6 млрд. человек, выросла к 1970 г. до 3,5 млрд.

Хотя рождаемость медленно падает, уровень смертности снижается быстрее (особенно после 1940 г.) и темпы роста численности населения увеличиваются. Объем производства промышленной продукции, продуктов питания и услуг на душу населения растет по экспоненте. Запасы ресурсов в 1970 г. составляли почти 95% от значений 1900 г., но начинали угрожающе сокращаться, поскольку продолжается рост численности населения и объема промышленного производства.

Рис. 1 Модель Медоуза

Из поведения модели видно, что приближение к предельным значениям и коллапс неизбежны, и причиной этого в данном случае оказывается истощение запасов невозобновимых ресурсов. Объем промышленного капитала достигает уровня, где требуется огромный приток ресурсов.

Сам процесс этого роста истощает запасы доступного сырья. С ростом цен на сырье и истощением месторождений для добычи ресурсов требуется все больше средств и, значит, все меньше становятся капиталовложения в будущий рост.

Наконец, капиталовложения не могут компенсировать истощения ресурсов; тогда разрушается индустриальная база, а вместе с ней система услуг и сельскохозяйственного производства, зависящие от промышленности (производство удобрений, пестицидов, работа исследовательских лабораторий и особенно производство энергии, необходимой для механизации).

За короткий срок ситуация серьезно осложнится, потому что численность населения все еще растет из-за запаздывания, обусловленного возрастной структурой населения и несовершенством регулирующих мер. В конце концов, численность населения снижается, поскольку повышается смертность в результате нехватки продуктов питания и медицинских услуг.

Точно рассчитывать время этих событий не имеет смысла, так как уровень агрегирования модели высок и в ней присутствует множество неопределенных факторов. Однако важно, что рост прекращается около 2100 г.

В каждом сомнительном случае эксперты старались выводить оценки с максимальным оптимизмом, пренебрегая случайными временными событиями, вроде войн или эпидемий, которые могли бы положить конец росту еще раньше, чем предсказывает модель. Другими словами, рост в модели продолжается дольше, чем это может оказаться в реальном мире.

С определенной уверенностью можно сказать, что если в современном мире не произойдет коренных изменений, рост численности населения и промышленного производства остановится не позднее начала будущего столетия.

Чтобы проверить результаты, касающиеся запасов ресурсов, исследователи удвоили оценку для 1900 г., сохранив все другие допущения такими, какими они были при обычном прогоне. Тогда уровень индустриализации оказался более высоким, потому что при подобном предположении запасы ресурсов истощаются не столь быстро.

Но разрастающиеся промышленные предприятия загрязняют среду с такой скоростью, что нагрузка на природный поглощающий механизм оказывается предельной. Уровень загрязнения растет очень быстро, немедленно вызывая повышение смертности и сокращение производства продовольствия. И к концу прогона запасы ресурсов истощаются полностью, несмотря на удвоенное значение их первоначальной величины. Обязательно ли в будущем мировая система будет расти, а потом придет к катастрофе, к мрачному полунищему существованию? Да, если предположить, что наш теперешний образ жизни не изменится. У нас достаточно свидетельств человеческой изобретательности и социальной гибкости. В системе заложены возможности множества многообещающих перемен, и некоторые из них уже произошли: “зеленая революция” повысила продуктивность сельского хозяйства в аграрных странах; быстро распространяются способы регулирования рождаемости.

В истории человечества много примеров, доказывающих, что человек не умеет жить в ограниченных физических пределах. Но есть и примеры успешного преодоления границ, и этот тип поведения вошел в культурные традиции многих народов современного мира. За последние 300 лет человечество накопило впечатляющий запас грандиозных технических достижений, которые позволили отодвинуть пределы демографического и экономического роста. Последний этап истории многих стран был настолько успешным, что народы, естественно, надеются и впредь прорываться через природные пределы с помощью технологии.

В докладе Римского клуба приводится пример решения ресурсной проблемы: «начиная с 1975 г., уровень загрязнения от всех источников снизится в 4 раза. Предположим, наконец, что средняя урожайность с 1 га увеличится во всем мире вдвое. Кроме того, предположим, что с 1975 г. все страны принимают надежные меры по ограничению рождаемости».

Все это означает, что мы пытаемся так или иначе обойти пределы роста, вводя в каждый сектор модели систему технологических мер. Моделируемая мировая система использует ядерную энергию, регенерирует ресурс и, разрабатывает самые глубокие залежи сырья, улавливает все загрязняющие вещества, собирает с полей немыслимые урожаи, в ней рождаются только дети, появления которых страстно желают их родители. И в результате все равно рост прекращается около 2100 г.

В этом повинны три одновременных кризиса. Нагрузка на землю вызывает эрозию, и производство продовольствия сокращается. Высокий уровень благосостояния населения, хотя он не превышает современного уровня благосостояния в США, обусловливает значительное истощение ресурсов. Загрязнение среды растет, снижается, затем снова резко растет, в результате чего опять сокращается производство продовольствия и повышается смертность. Технологические решения могут лишь продлить период демографического и промышленного роста, но не отодвинуть его конечных пределов.

Из-за множества неопределенных факторов, принятых приближений и ограниченности мировой модели не имеет смысла рассматривать подробно весь спектр возможных катастроф. Еще раз подчеркнем: ни один компьютерный результат ничего не предсказывает. Мы вовсе не думаем, что реальный мир будет вести себя согласно графикам, полученным из работы модели, особенно когда речь идет о коллапсе.

Модель показывает динамику одних лишь “физических” аспектов человеческой деятельности. Она дает основания предполагать, что социальные переменные - распределение доходов, традиционный состав семьи, выбор товаров, продуктов и услуг - будут придерживаться нынешней “линии поведения”. Эта линия, отражающая человеческие ценности, была выработана в фазе роста цивилизации. И, конечно, когда численность населения и объем производства начнут падать, ее нужно будет серьезно пересмотреть.

Во всех прогонах модели содержится неявное утверждение, что рост численности населения и капитала будет продолжаться, пока не дойдет до определенных, “естественных” пределов. Это утверждение, очевидно, тоже должно стать основным положением в реальной современной системе человеческих ценностей.

Допуская, что рост населения и капитала нельзя остановить произвольно, пока он сам не подойдет к собственным границам, мы не можем разрабатывать систему мер, которая позволит избежать катастрофы. “Технологические оптимисты” надеются, что технология способна уничтожить или отодвинуть пределы роста численности населения и капитала. Мировая модель Медоуза показала, что технологические решения проблемы истощения ресурсов, загрязнения среды, нехватки продовольствия не решают главной проблемы - экспоненциального роста в конечной сложной системе. Попытки дать даже самую оптимистическую оценку технологическим возможностям не предотвращают сокращения численности населения и производства и не отводят катастрофы, которая должна произойти к 2100 г.

Прежде чем браться за широкомасштабное внедрение новой технологии, нужно научиться предвидеть и предупреждать социальные последствия. Технологию можно сменить очень быстро, но политические и социальные институты изменяются медленно. Кроме того, реформы здесь почти никогда не предупреждают требования общества, а проводятся только в ответ на них.

Нужно помнить также и о социальном запаздывании. Оно необходимо, чтобы позволить обществу освоиться с переменой или подготовиться ней. Большинство таких запаздываний - физической или социальной природы - снижает устойчивость мировой системы и увеличивает вероятность предельных форм в ее поведении. Их влияние становится критическим, потому что процессы роста увеличивают добавочную нагрузку на систему. Человечество пока еще не в состоянии регулировать темпы технологического прогресса. И могут появиться задачи, не имеющие технического решения, или возникнет комплекс взаимосвязанных проблем, который положит конец росту численности населения и объема капитала.

Технологическая борьба с природными механизмами, с помощью которых окружающая среда противостоит процессам роста, в прошлом была настолько успешной, что вся человеческая культура основывалась на преодолении пределов, вместо того, чтобы учить человека жить в их рамках.

Человек пока имеет шанс определить пределы роста и остановиться возле них, ослабив силы, вызывающие рост капитала и численности населения, или разработав контрмеры, или предпринимая и то и другое. Контрмеры могут оказаться не очень приятными. Они наверняка изменят социальную и экономическую структуру, глубоко укоренившуюся в человеческой культуре за долгие столетия роста.

Но единственная альтернатива этому - ждать, пока технология не потребует больших затрат, чем в состоянии позволить себе общество, или пока отрицательные последствия технологических решений сами не остановят рост, или пока не возникнут проблемы, не имеющие технологических решений. В любом из этих случаев от нас уже не будет зависеть, у какой черты остановиться